SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "swepub ;pers:(Larsson Anders);pers:(Perchiazzi Gaetano)"

Search: swepub > Larsson Anders > Perchiazzi Gaetano

  • Result 1-10 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahlström, J. Zebialowicz, et al. (author)
  • Synthetic surfactant with a recombinant surfactant protein C analogue improves lung function and attenuates inflammation in a model of acute respiratory distress syndrome in adult rabbits
  • 2019
  • In: Respiratory Research. - : BMC. - 1465-9921 .- 1465-993X. ; 20
  • Journal article (peer-reviewed)abstract
    • AimIn acute respiratory distress syndrome (ARDS) damaged alveolar epithelium, leakage of plasma proteins into the alveolar space and inactivation of pulmonary surfactant lead to respiratory dysfunction. Lung function could potentially be restored with exogenous surfactant therapy, but clinical trials have so far been disappointing. These negative results may be explained by inactivation and/or too low doses of the administered surfactant. Surfactant based on a recombinant surfactant protein C analogue (rSP-C33Leu) is easy to produce and in this study we compared its effects on lung function and inflammation with a commercial surfactant preparation in an adult rabbit model of ARDS.MethodsARDS was induced in adult New Zealand rabbits by mild lung-lavages followed by injurious ventilation (V-T 20m/kg body weight) until P/F ratio<26.7kPa. The animals were treated with two intratracheal boluses of 2.5mL/kg of 2% rSP-C33Leu in DPPC/egg PC/POPG, 50:40:10 or poractant alfa (Curosurf (R)), both surfactants containing 80mg phospholipids/mL, or air as control. The animals were subsequently ventilated (V-T 8-9m/kg body weight) for an additional 3h and lung function parameters were recorded. Histological appearance of the lungs, degree of lung oedema and levels of the cytokines TNF alpha IL-6 and IL-8 in lung homogenates were evaluated.ResultsBoth surfactant preparations improved lung function vs. the control group and also reduced inflammation scores, production of pro-inflammatory cytokines, and formation of lung oedema to similar degrees. Poractant alfa improved compliance at 1h, P/F ratio and PaO2 at 1.5h compared to rSP-C33Leu surfactant.ConclusionThis study indicates that treatment of experimental ARDS with synthetic lung surfactant based on rSP-C33Leu improves lung function and attenuates inflammation.
  •  
2.
  • Pellegrini, Mariangela, et al. (author)
  • Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse
  • 2020
  • In: American Journal of Respiratory and Critical Care Medicine. - : AMER THORACIC SOC. - 1073-449X .- 1535-4970. ; 3:7
  • Journal article (peer-reviewed)abstract
    • Rationale: Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.Objectives: To assess whether external expiratory resistances 1) affect expiratory diaphragmatic contraction during spontaneous breathing, 2) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and 3) reduce tidal atelectasis, preventing hyperinflation.Methods: Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.Measurements and Main Results: Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), 1) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%, 2) expiratory flow was reduced and the expiratory time constants became more homogeneous, and 3) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.Conclusions: The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.
  •  
3.
  • Barrueta Tenhunen, Annelie, et al. (author)
  • Does the antisecretory peptide AF-16 reduce lung oedema in experimental ARDS?
  • 2019
  • In: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 124:4, s. 246-253
  • Journal article (peer-reviewed)abstract
    • Background: Acute respiratory distress syndrome (ARDS) is an acute inflammatory condition with pulmonary capillary leakage and lung oedema formation. There is currently no pharmacologic treatment for the condition. The antisecretory peptide AF-16 reduces oedema in experimental traumatic brain injury. In this study, we tested AF-16 in an experimental porcine model of ARDS. Methods: Under surgical anaesthesia 12 piglets were subjected to lung lavage followed by 2 hours of injurious ventilation. Every hour for 4 hours, measurements of extravascular lung water (EVLW), mechanics of the respiratory system, and hemodynamics were obtained. Results: There was a statistically significant (p = 0.006, two-way ANOVA) reduction of EVLW in the AF-16 group compared with controls. However, this was not mirrored in any improvement in the wet-to-dry ratio of lung tissue samples, histology, inflammatory markers, lung mechanics, or gas exchange. Conclusions: This pilot study suggests that AF-16 might improve oedema resolution as indicated by a reduction in EVLW in experimental ARDS.
  •  
4.
  • Barrueta Tenhunen, Annelie, et al. (author)
  • Fluid restrictive resuscitation with high molecular weight hyaluronan infusion in early peritonitis sepsis
  • 2023
  • In: Intensive Care Medicine Experimental. - : Springer Nature. - 2197-425X. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Sepsis is a condition with high morbidity and mortality. Prompt recognition and initiation of treatment is essential. Despite forming an integral part of sepsis management, fluid resuscitation may also lead to volume overload, which in turn is associated with increased mortality. The optimal fluid strategy in sepsis resuscitation is yet to be defined. Hyaluronan, an endogenous glycosaminoglycan with high affinity to water is an important constituent of the endothelial glycocalyx. We hypothesized that exogenously administered hyaluronan would counteract intravascular volume depletion and contribute to endothelial glycocalyx integrity in a fluid restrictive model of peritonitis. In a prospective, blinded model of porcine peritonitis sepsis, we randomized animals to intervention with hyaluronan (n = 8) or 0.9% saline (n = 8). The animals received an infusion of 0.1% hyaluronan 6 ml/kg/h, or the same volume of saline, during the first 2 h of peritonitis. Stroke volume variation and hemoconcentration were comparable in the two groups throughout the experiment. Cardiac output was higher in the intervention group during the infusion of hyaluronan (3.2 ± 0.5 l/min in intervention group vs 2.7 ± 0.2 l/min in the control group) (p = 0.039). The increase in lactate was more pronounced in the intervention group (3.2 ± 1.0 mmol/l in the intervention group and 1.7 ± 0.7 mmol/l in the control group) at the end of the experiment (p < 0.001). Concentrations of surrogate markers of glycocalyx damage; syndecan 1 (0.6 ± 0.2 ng/ml vs 0.5 ± 0.2 ng/ml, p = 0.292), heparan sulphate (1.23 ± 0.2 vs 1.4 ± 0.3 ng/ml, p = 0.211) and vascular adhesion protein 1 (7.0 ± 4.1 vs 8.2 ± 2.3 ng/ml, p = 0.492) were comparable in the two groups at the end of the experiment. In conclusion, hyaluronan did not counteract intravascular volume depletion in early peritonitis sepsis. However, this finding is hampered by the short observation period and a beneficial effect of HMW-HA in peritonitis sepsis cannot be discarded based on the results of the present study.
  •  
5.
  • Bergmann, Astrid, et al. (author)
  • Effect of remote ischemic preconditioning on exhaled nitric oxide concentration in piglets during and after one-lung ventilation
  • 2020
  • In: Respiratory Physiology & Neurobiology. - : Elsevier BV. - 1569-9048 .- 1878-1519. ; 276
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Remote ischemic preconditioning (RIP) may protect target organs from ischemia - reperfusion injury, however, little is known on pulmonary effects of RIP prior to, immediately after and several hours after one-lung ventilation (OLV). The present randomized, controlled, animal experiment was undertaken to analyze these issues.METHODS: After animal ethics committee approval, twelve piglets (26 ± 2 kg) were anesthetized and randomly assigned to a control (n = 6) or to a RIP group (n = 6). For RIP, arterial perfusion of a hind limb was suspended by an inflated blood pressure cuff (200 mmHg for 5 min) and deflated for another 5 min, this was repeated four times. After intubation, mechanical ventilation (MV) was kept constant with tidal volume 10 ml/kg, inspired oxygen fraction (FIO2) 0.40, and positive end-expiratory pressure (PEEP) 5cmH2O. FIO2 was increased to 1 after RIP in the RIP group and after the sham procedure in the control group, respectively, for the time of OLV. OLV was established by left-sided bronchial blockade. After OLV, TLV was re-established until the end of the protocol. Exhaled nitric oxide (NO) was measured by ozon chemiluminiscense and ventilatory and hemodynamic variables were assessed according to the protocol.RESULTS: Hemodynamic and respiratory data were similar in both groups. Arterial pO2 was higher in the RIP group after two hours of OLV. In the control group, exhaled NO decreased during OLV and remained at low levels for the rest of the protocol. In the RIP group, exhaled NO decreased as well during OLV but returned to baseline levels when TLV was re-established.CONCLUSIONS: RIP has no effects on hemodynamic and respiratory variables in juvenile, healthy piglets. RIP improves the oxygenation after OLV and prevents the decline of exhaled NO after OLV.
  •  
6.
  • Borges, João Batista, et al. (author)
  • Zero expiratory pressure and low oxygen concentration promote heterogeneity of regional ventilation and lung densities
  • 2016
  • In: Acta Anaesthesiologica Scandinavica. - : Wiley. - 0001-5172 .- 1399-6576. ; 60:7, s. 958-968
  • Journal article (peer-reviewed)abstract
    • BackgroundIt is not well known what is the main mechanism causing lung heterogeneity in healthy lungs under mechanical ventilation. We aimed to investigate the mechanisms causing heterogeneity of regional ventilation and parenchymal densities in healthy lungs under anesthesia and mechanical ventilation. MethodsIn a small animal model, synchrotron imaging was used to measure lung aeration and regional-specific ventilation (sV.). Heterogeneity of ventilation was calculated as the coefficient of variation in sV. (CVsV.). The coefficient of variation in lung densities (CVD) was calculated for all lung tissue, and within hyperinflated, normally and poorly aerated areas. Three conditions were studied: zero end-expiratory pressure (ZEEP) and FIO2 0.21; ZEEP and FIO2 1.0; PEEP 12 cmH(2)O and F(I)O(2)1.0 (Open Lung-PEEP = OLP). ResultsThe mean tissue density at OLP was lower than ZEEP-1.0 and ZEEP-0.21. There were larger subregions with low sV. and poor aeration at ZEEP-0.21 than at OLP: 12.9 9.0 vs. 0.6 +/- 0.4% in the non-dependent level, and 17.5 +/- 8.2 vs. 0.4 +/- 0.1% in the dependent one (P = 0.041). The CVsV. of the total imaged lung at PEEP 12 cmH(2)O was significantly lower than on ZEEP, regardless of FIO2, indicating more heterogeneity of ventilation during ZEEP (0.23 +/- 0.03 vs. 0.54 +/- 0.37, P = 0.049). CVD changed over the different mechanical ventilation settings (P = 0.011); predominantly, CVD increased during ZEEP. The spatial distribution of the CVD calculated for the poorly aerated density category changed with the mechanical ventilation settings, increasing in the dependent level during ZEEP. ConclusionZEEP together with low FIO2 promoted heterogeneity of ventilation and lung tissue densities, fostering a greater amount of airway closure and ventilation inhomogeneities in poorly aerated regions.
  •  
7.
  • Broche, Ludovic, et al. (author)
  • Dynamic Mechanical Interactions Between Neighboring Airspaces Determine Cyclic Opening and Closure in Injured Lung
  • 2017
  • In: Critical Care Medicine. - 0090-3493 .- 1530-0293. ; 45:4, s. 687-694
  • Journal article (peer-reviewed)abstract
    • Objectives: Positive pressure ventilation exposes the lung to mechanical stresses that can exacerbate injury. The exact mechanism of this pathologic process remains elusive. The goal of this study was to describe recruitment/derecruitment at acinar length scales over short-time frames and test the hypothesis that mechanical interdependence between neighboring lung units determines the spatial and temporal distributions of recruitment/derecruitment, using a computational model. Design: Experimental animal study. Setting: International synchrotron radiation laboratory. Subjects: Four anesthetized rabbits, ventilated in pressure controlled mode. Interventions: The lung was consecutively imaged at - 1.5-minute intervals using phase-contrast synchrotron imaging, at positive end expiratory pressures of 12, 9, 6, 3, and 0 cm H2O before and after lavage and mechanical ventilation induced injury. The extent and spatial distribution of recruitment/derecruitment was analyzed by subtracting subsequent images. In a realistic lung structure, we implemented a mechanistic model in which each unit has individual pressures and speeds of opening and closing. Derecruited and recruited lung fractions (F-derecruaed, F-recruited) were computed based on the comparison of the aerated volumes at successive time points. Measurements and Main Results: Alternative recruitment/derecruitment occurred in neighboring alveoli over short-time scales in all tested positive end-expiratory pressure levels and despite stable pressure controlled mode. The computational model reproduced this behavior only when parenchymal interdependence between neighboring acini was accounted for. Simulations closely mimicked the experimental magnitude of F-derecruited and F-recruited when mechanical interdependence was included, while its exclusion gave F-recruited values of zero at positive end -expiratory pressure greater than or equal to 3 cm H2O. Conclusions: These findings give further insight into the microscopic behavior of the injured lung and provide a means of testing protective-ventilation strategies to prevent recruitment/derecruitment and subsequent lung damage.
  •  
8.
  •  
9.
  • Broche, Ludovic, et al. (author)
  • Individual Airway Closure Characterized In Vivo by Phase-Contrast CT Imaging in Injured Rabbit Lung
  • 2019
  • In: Critical Care Medicine. - : LIPPINCOTT WILLIAMS & WILKINS. - 0090-3493 .- 1530-0293. ; 47:9, s. E774-E781
  • Journal article (peer-reviewed)abstract
    • Objectives: Airway closure is involved in adverse effects of mechanical ventilation under both general anesthesia and in acute respiratory distress syndrome patients. However, direct evidence and characterization of individual airway closure is lacking. Here, we studied the same individual peripheral airways in intact lungs of anesthetized and mechanically ventilated rabbits, at baseline and following lung injury, using high-resolution synchrotron phase-contrast CT.Design: Laboratory animal investigation.Setting: European synchrotron radiation facility.Subjects: Six New-Zealand White rabbits.Interventions: The animals were anesthetized, paralyzed, and mechanically ventilated in pressure-controlled mode (tidal volume, 6 mL/kg; respiratory rate, 40; Fio(2), 0.6; inspiratory:expiratory, 1:2; and positive end-expiratory pressure, 3 cm H2O) at baseline. Imaging was performed with a 47.5 x 47.5 x 47.5 mu m voxel size, at positive end-expiratory pressure 12, 9, 6, 3, and 0 cm H2O. The imaging sequence was repeated after lung injury induced by whole-lung lavage and injurious ventilation in four rabbits. Cross-sections of the same individual airways were measured.Measurements and Main Results: The airways were measured at baseline (n = 48; radius, 1.7 to 0.21 mm) and after injury (n = 32). Closure was observed at 0 cm H2O in three of 48 airways (6.3%; radius, 0.350.08 mm at positive end-expiratory pressure 12) at baseline and five of 32 (15.6%; radius, 0.28 +/- 0.09 mm) airways after injury. Cross-section was significantly reduced at 3 and 0 cm H2O, after injury, with a significant relation between the relative change in cross-section and airway radius at 12 cm H2O in injured, but not in normal lung (R = 0.60; p < 0.001).Conclusions: Airway collapsibility increases in the injured lung with a significant dependence on airway caliber. We identify "compliant collapse" as the main mechanism of airway closure in initially patent airways, which can occur at more than one site in individual airways.
  •  
10.
  • Derosa, Savino, et al. (author)
  • Reabsorption atelectasis in a porcine model of ARDS : regional and temporal effects of airway closure, oxygen, and distending pressure
  • 2013
  • In: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 115:10, s. 1464-1473
  • Journal article (peer-reviewed)abstract
    • Little is known about the small airways dysfunction in acute respiratory distress syndrome (ARDS). By computed tomography (CT) imaging in a porcine experimental model of early ARDS, we aimed at studying the location and magnitude of peripheral airway closure and alveolar collapse under high and low distending pressures and high and low inspiratory oxygen fraction (FIO2). Six piglets were mechanically ventilated under anesthesia and muscle relaxation. Four animals underwent saline-washout lung injury, and two served as healthy controls. Beyond the site of assumed airway closure, gas was expected to be trapped in the injured lungs, promoting alveolar collapse. This was tested by ventilation with an FIO2 of 0.25 and 1 in sequence during low and high distending pressures. In the most dependent regions, the gas/tissue ratio of end-expiratory CT, after previous ventilation with FIO2 0.25 low-driving pressure, was significantly higher than after ventilation with FIO2 1; with high-driving pressure, this difference disappeared. Also, significant reduction in poorly aerated tissue and a correlated increase in nonaerated tissue in end-expiratory CT with FIO2 1 low-driving pressure were seen. When high-driving pressure was applied or after previous ventilation with FIO2 0.25 and low-driving pressure, this pattern disappeared. The findings suggest that low distending pressures produce widespread dependent airway closure and with high FIO2, subsequent absorption atelectasis. Low FIO2 prevented alveolar collapse during the study period because of slow absorption of gas behind closed airways.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 35
Type of publication
journal article (32)
conference paper (2)
other publication (1)
Type of content
peer-reviewed (24)
other academic/artistic (10)
pop. science, debate, etc. (1)
Author/Editor
Pellegrini, Mariange ... (19)
Hedenstierna, Göran, ... (12)
Hedenstierna, Göran (11)
Segelsjö, Monica (5)
show more...
Borges, João Batista (5)
Broche, Ludovic (5)
Derosa, Savino (5)
Rylander, Christian (4)
Bayat, Sam (4)
Bravin, Alberto (4)
Porra, Liisa (4)
Meyhoff, Christian S ... (3)
Larsson, Anders S. (3)
Fredén, Filip (3)
Tannoia, Angela (3)
Feinstein, R (2)
Ball, Lorenzo (2)
Pelosi, Paolo (2)
Batista Borges, João ... (2)
Barrueta Tenhunen, A ... (2)
Degrugilliers, Loic (2)
Massaro, F. (1)
Johansson, J (1)
Rising, Anna (1)
Maccarana, Marco (1)
Ahlström, J. Zebialo ... (1)
Mikolka, P. (1)
Basabe-Burgos, O. (1)
Curstedt, T. (1)
Hachenberg, Thomas (1)
Hansson, Hans-Arne, ... (1)
Hedenstierna, G (1)
Skorup, Paul (1)
Tenhunen, Jyrki (1)
Bayat, S (1)
Wetterslev, Jørn (1)
Massaro, Fabrizia (1)
van der Heijden, Jaa ... (1)
Kretzschmar, Moritz (1)
Bergmann, Astrid (1)
Schilling, Thomas (1)
Rylander, Christian, ... (1)
Borges, João Batista ... (1)
Porra, L. (1)
Pellegrini, M. (1)
Tannoia, A. (1)
Derosa, S. (1)
Sindaco, Alessandra (1)
show less...
University
Uppsala University (34)
University of Gothenburg (2)
Karolinska Institutet (1)
Swedish University of Agricultural Sciences (1)
Language
English (35)
Research subject (UKÄ/SCB)
Medical and Health Sciences (30)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view